Secondary Agriculture - Challenges, Opportunities and Way Forward
Secondary Agriculture - Challenges, Opportunities and Way Forward

NATIONAL ACADEMY OF AGRICULTURAL SCIENCES, NEW DELHI
December 2022
The Indian agriculture is looking at a paradigm shift from mere sustenance and food security to profitability and nutritional security. In the 75 years after independence, India has seen significant increase in the production of food. The post-production management infrastructure has also improved a lot and fairly large processing industries have emerged for the conventional food sector, i.e. processing for principal food/ feed/ fibre product. The Indian Agricultural Research and Education institutes, spread across the country, have been providing plethora of technological solutions for higher productivity, efficient processing, proficient management and effective marketing of produce. This has helped India evolve from a distressed importer to be a benevolent exporter of food commodities viz. food grains, fish, meat, etc. However, there is a largely untapped sector where Indian exports, including agro-industrial by-products, forest produce or even the main commodity, come back to Indian market after higher level of processing in the importing countries. The huge profit from this higher-level value addition goes to processors of other countries, making us dependent on them for many items including essential active ingredients of pharmaceutical and other industrial products.

It is therefore conceived that tertiary and higher-level processing of agricultural produce, residues and by-products into high value derivatives or products would help grow a new industrial sector and would help realize the value of the products from agricultural origin, which are otherwise considered as waste or low value. This next level of processing is termed as ‘Secondary Agriculture’ since it is an upgraded version of the traditional ‘Primary Agriculture’, which leads to the principal products.

Realising the importance of this burgeoning sector, NAAS organized a brain-storming session to deliberate on various techno-economical aspects on 21st October 2021. Professionals from different areas contributed to the first draft, which was further deliberated upon by a group chaired by Dr Mangala Rai, Former President, NAAS. The present document is an attempt to define the concept, identify opportunities and challenges and recommend the course of action for various stake holders viz. policy makers, researchers, industry, prospective entrepreneurs, academicians, etc. Variety of possibilities for this higher-level processing have been presented in this document. However, it is expected that in coming years many more profitable products and innovative processing models will be introduced.
The academy is thankful to Dr S.N. Jha, Convener of the Brain Storming Session for being the lead contributor and Drs Ravishankar, Director, ICAR-CIFE, Mumbai, Nachiket Kotwaliwale, Director, ICAR-CIPHET, Ludhiana, Devinder Dhingra, Principal Scientist, Agricultural Engineering Division, ICAR, New Delhi and R.K. Vishwakarma, Principal Scientist, ICAR-CIPHET, Ludhiana for providing valuable support in preparing this document. The inputs provided by Dr V. Prakash, as reviewer is duly acknowledged. I am also thankful to Dr Pratap S. Birthal and Dr Malavika Dadlani for editorial support. I am sanguine that this document will help increase prosperity of all the functionaries involved in agriculture.

December, 2022
New Delhi

(Trilochan Mohapatra)
President, NAAS
Secondary Agriculture - Challenges, Opportunities and Way Forward

INTRODUCTION

Agriculture is the culture of plants, animals and microbes. Agricultural activities include cultivation of crops, rearing animals and birds, growing and catching fish, cultivating microbes, raising agroforestry, etc. to harvest the economic product. The aforementioned activities use natural resources such as land, water, air, biomass, sunshine, etc. and their output is intended primarily to meet the needs of human beings with respect to food, feed, fibre, etc., directly or after some primary processing; and indirectly for other living creatures. With a sharp increase in the global population, demand from agriculture to feed this ever-growing population has posed a major challenge especially since, natural resource-based inputs are a major limiting factor for enhancement of production and productivity. Hence, the necessity for conserving the produce through reduction of losses gained importance leading to the adoption of suitable postharvest operations for transforming the raw materials (primary products) by primary processing or converting it to a value-added product for direct consumption or utilization as an input for further processing.

Primary processing activities are generally defined as those activities, which do not significantly change the physical appearance i.e., shape, size, color, etc., of agri-produce. These activities include operations such as threshing, washing, cleaning, sorting, grading etc., many such unit operations are often performed at farm itself and could be mandatory before consumption of the produce. Secondary processing is the stage where the original identity of primary product is changed (e.g., milling of wheat into flour, splitting of pulses, smoking/roasting of meat, etc.). Further processing may be required for making the material useful for food, feed and other uses. All these activities which are in vogue for bringing the agricultural produce in a desired form for consumption constitute the primary agriculture.

Output of these processing operations are crop residue and co-product/by-product of production and processing system. Many times they are further processed for industrial, pharmaceutical, nutraceutical products and this process is referred to as tertiary and quaternary processing. Thus, the secondary agriculture is defined to add value to the finished agriculture and agriculture based industrial produce and generate income even from waste. It is believed that the high value low volume products from high volume low value products through Secondary Agriculture
activities can benefit the overall economy by generating employment, improving export potential, reduce dependence on imports and converting waste to wealth. The process involves cycling and recycling to realise the real potential even of an intermediary produce; i.e. to fully use and have true value as per growing needs, utility, applicability, adoptability and ever unfolding knowledge and technological domain. In the process, the ultimate aim is to sustain the system’s sustainability so that the four ecosystem services continue to be continuously provided effectively and efficiently to humanity in perpetuity.

The health of Indian agriculture is evident from the fact that in spite of occurrence of various natural calamities like flood and drought, and adverse climatic events, food production is at its all time high. Despite continuous increase in production and productivity, food and nutritional security is still a challenge globally because of many different reasons. Some of them include (i) unsustainable increase in population, (ii) use of cultivable land for other activities, (iii) increasing input cost, (iv) depleting natural resources, (v) adverse climatic events including global warming, (vi) younger generation not showing interest in agriculture because of lower profitability.

There is tremendous scope for adding further value to the main produce as well as for the utilization of various co-product/ by-product from primary agriculture as well as the post production operations, which has the capability of transforming Indian agricultural scenario if the same is adequately and appropriately utilized. Globally, many such examples are available where the by-product/co-product yields more value/profit as compared to the main product for which the crop was supposedly grown.

Sustainability of the agricultural production system in the changing global scenario where availability of natural resources is scarce, soil and environmental health is a concern, and enhancing value and profitability of agriculture is imperative for sustainability, the following need to be addressed on priority:

(i) Monetisation of farmers’ produce
(ii) Bringing organized industry to rural areas to boost non-farm rural economy
(iii) Developing a technologically backed circular economy through value addition.

Such developments in addition to its linkage with as farmers often face problem of marketing their produce at remunerative prices. Agricultural processing level therefore through food processing companies, mega food parks to tiny cottage level industries involved in processing and value addition activities are increasing
at faster rate and also yield considerable agro-industrial by-products, which are hardly being used for manufacturing very high value products.

To mitigate these issues secondary agriculture can play a prominent role. Promoting secondary agriculture can help attain sustainable development goals, which aim to connect primary, secondary and tertiary sectors through optimal use of inputs contributing to primary agriculture production, capturing ‘value’ in primary agricultural activities, and generating additional income at the rural enterprise level. Unless Tertiary and Advanced Tertiary Processing are linked to the primary agriculture, the profit from it will not reach the base farmer. In a sustainable domain of All Inclusive Agriculture, attention is required for both Primary and Secondary Agriculture.

CONCEPT AND DEFINITION OF SA

The term ‘Secondary Agriculture’ is not widely used. The EU Economic Accounts for Agriculture (EEAA) include all related service activities as part of the agriculture sector. The United Nations Statistics Division, that classifies various economic activities, does not define secondary agriculture. According to Chengappa (2013), Secondary Agriculture includes “all practices and processes, which add value to primary agricultural commodities using efficient technologies, market information and consumer preference”. A Committee on Doubling Farmers Income in India has defined the term “Secondary Agriculture” as a productive activity at enterprise level that utilises raw material as the primary product and by-products of agriculture and other biological resources available locally in its rural agrarian neighbourhood, deploying locally available skills or a high level of rural manpower, to operate/manage/maintain the production of goods and services; and the activities can be categorised appropriately under the Micro, Small or Medium Enterprises Development (MSMED) Act 2006. The ‘Secondary Agriculture’ shall be considered as an industry whose inputs are majorly sourced from primary agriculture. It shall not be confused with food processing, because food processing industries are also dependent on the raw materials obtained from the primary agriculture. The products of Secondary Agriculture are much more complex and have diverse applications including food and feed.

The Planning Commission of India had constituted a Technical Advisory Committee on Secondary Agriculture (TACSA) in 2007. The TACSA submitted its report in October 2008 but did not define the term 'secondary agriculture'. Instead, it states that the term “is very broad as it includes all food and non-food bio-resource-based products for human and industrial use”. The term is seen to be used as an omnibus expression to relate to the product of agro-based processing...
activities of the secondary sector. Effectively, TACSA detailed the output from the activities to explain the term “secondary agriculture”. In fact, by correlating secondary agriculture to all food and non-food products it seems the term would encompass all types of industries as long as its input is a bio-resource – making secondary agriculture another terminology for all kinds of agro-industry. The “Secondary Agriculture” as explained by Prof. DPS Verma (2008) is “All practices and processes which add value to the primary agricultural commodities using efficient technologies, market information and consumer preference” and covers the entire post-production system giving emphasis on unused biomaterials/by-products obtained from primary agriculture/processing. Therefore, the secondary agriculture in the Indian context may be defined as “All practices and processes of converting agricultural produce, residues and by-products into high value commodities for pharmaceutical, industrial, medicinal and specified food uses as per market intelligence and consumer preferences for increasing farmers’ income”. High value product/compound extraction from complete biomass of a particular crop, rural industrialization and marketing are the main element of the Secondary Agriculture.

Another definition of SA could be “the industrial manufacturing of high value compounds / commodities / products such as food/feed supplements, food additives, compounds of pharmaceutical value, agri-inputs, industrial chemicals and consumer goods etc. from the raw materials obtained from the primary sources of agriculture and allied sectors, crop residues and agro-industrial by-products”.

The TACSA report focuses on products of the bio-processing industries, including the secondary and advanced level of manufactured products of the industry, such as ethanol, chemicals, enzymes, biologicals, biopolymers, etc.

SECONDARY AGRICULTURE RESOURCES

Agriculture, besides the main products, produces a huge quantum of by-products. These residues or by-products, if not handled appropriately, may pose threat to the subsequent crops. In absence of efficient and economic handling and disposal protocols, often these resources are dumped or burnt and hence pollute the environment. The potential availability of crop residues/ agro-waste/ agro-industrial by-products is shown in Table 1. It is noteworthy that this huge resource is almost untapped. Although some part of this goes into revitalizing the soil through composting, still there is a great potential to extract some of the industrially vital components before composting.
Table 1: Estimated biomass of a few selected major crops (Based on production figures of 2020-21)

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Production (mT)</th>
<th>Available for processing (mT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice</td>
<td>122.27</td>
<td></td>
</tr>
<tr>
<td>Bran</td>
<td>8.98</td>
<td>6.41</td>
</tr>
<tr>
<td>Broken rice</td>
<td>24.37</td>
<td>17.06</td>
</tr>
<tr>
<td>Straw</td>
<td>218.04</td>
<td>91.58</td>
</tr>
<tr>
<td>Wheat</td>
<td>109.52</td>
<td></td>
</tr>
<tr>
<td>Bran</td>
<td>15.17</td>
<td>2.13</td>
</tr>
<tr>
<td>Germ</td>
<td>3.31</td>
<td>0.46</td>
</tr>
<tr>
<td>Straw</td>
<td>140.20</td>
<td>61.42</td>
</tr>
<tr>
<td>Maize</td>
<td>31.51</td>
<td></td>
</tr>
<tr>
<td>Corn cob</td>
<td>7.88</td>
<td>2.86</td>
</tr>
<tr>
<td>Germ</td>
<td>3.46</td>
<td>0.70</td>
</tr>
<tr>
<td>Straw</td>
<td>59.23</td>
<td>21.47</td>
</tr>
<tr>
<td>Pigeon pea</td>
<td>4.28</td>
<td></td>
</tr>
<tr>
<td>Hulls</td>
<td>0.64</td>
<td>0.44</td>
</tr>
<tr>
<td>Broken</td>
<td>0.55</td>
<td>0.39</td>
</tr>
<tr>
<td>Stalks</td>
<td>17.12</td>
<td>7.51</td>
</tr>
<tr>
<td>Soybean</td>
<td>12.90</td>
<td></td>
</tr>
<tr>
<td>Soy meal</td>
<td>9.18</td>
<td>7.31</td>
</tr>
<tr>
<td>Soy hulls</td>
<td>1.20</td>
<td>0.96</td>
</tr>
<tr>
<td>Guar</td>
<td>1.52</td>
<td></td>
</tr>
<tr>
<td>Guar gum</td>
<td>0.86</td>
<td>0.26</td>
</tr>
<tr>
<td>Germ</td>
<td>0.47</td>
<td>0.41</td>
</tr>
<tr>
<td>Hulls</td>
<td>0.12</td>
<td>0.10</td>
</tr>
<tr>
<td>Mango</td>
<td>20.82</td>
<td></td>
</tr>
<tr>
<td>Peel</td>
<td>3.12</td>
<td>0.15</td>
</tr>
<tr>
<td>Stone</td>
<td>3.74</td>
<td>0.21</td>
</tr>
<tr>
<td>Citrus</td>
<td>14.26</td>
<td></td>
</tr>
<tr>
<td>Peel</td>
<td>6.18</td>
<td>1.37</td>
</tr>
<tr>
<td>Tomato</td>
<td>24.30</td>
<td></td>
</tr>
<tr>
<td>Processing by-products</td>
<td>2.06</td>
<td>1.65</td>
</tr>
<tr>
<td>Milk</td>
<td>198.44</td>
<td></td>
</tr>
<tr>
<td>Whey, Butter milk, Ghee residue</td>
<td>8.3, 57.9, 4.96</td>
<td>1.65, 6.61, 0.50</td>
</tr>
<tr>
<td>Colostrum</td>
<td>0.58</td>
<td>0.05</td>
</tr>
<tr>
<td>Fish</td>
<td>14.16</td>
<td></td>
</tr>
<tr>
<td>Frame</td>
<td>3.64</td>
<td>2.12</td>
</tr>
<tr>
<td>Scales, skin</td>
<td>1.36</td>
<td>0.61</td>
</tr>
<tr>
<td>Meat and poultry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poultry waste</td>
<td>0.70</td>
<td>0.17</td>
</tr>
<tr>
<td>Buffalo by-products & waste</td>
<td>2.17</td>
<td>1.1</td>
</tr>
</tbody>
</table>

The extent of processing of almost all categories of agri-produce has increased in the country. In a study conducted by Ministry of Food Processing, the level of processing of food grains was found 49.3% in 2010-11, which increased to 68.2% in the year 2018-19. In the case of oilseeds, the level of processing has been decreased from 60.1% (2010-11) to 49.8% (2018-19). The processing level of fruits and vegetables was 1.9% in 2010-11, which slightly increased to 3.3% in 2018-19.
The growth in the processing of animal products was estimated to be 18.7% during 2018-19 in comparison to 8.7% in 2010-11. A significant increase in the level of fish processing was observed with an increase from a level of 2.8% during 2010-11 to 15.4% in the year 2018-19.

During the 5 years ending in 2019-20, food processing sector in India has grown at an Average Annual Growth Rate (AAGR) of around 11.18 % as compared to that of 4.19 % in Agriculture (at 2011-12 prices) using the total number of food factories in registered food processing sector, as per the latest annual survey of Industries (2018-19). Among the industry, highest numbers of registered factories are located in Andhra Pradesh (13.93%) followed by Tamil Nadu (12.28%), Telangana (9.61%), Punjab (7.67%) and Maharashtra (6.88%). Food Processing Sector thus has emerged as an important segment of the Indian economy in terms of its contribution to GDP, employment and investment. The sector contributes as much as 9.87 per cent and 11.38 per cent of Gross Value Added (GVA) in manufacturing and agriculture sector, respectively in 2019-20 at 2011-12 prices (Annual Report 2021-2022, Ministry of Food Processing Industries, Govt. of India). However, the high-value products from by-products, agro-waste/crop residues for industrial uses such as active pharma ingredients (API), nutraceutical, etc. are negligible in the country. About 90% API and more than 60 % nutraceutical products are imported

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Possible high value low volume products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice</td>
<td></td>
</tr>
<tr>
<td>Bran</td>
<td>Protein isolate, Concentrate</td>
</tr>
<tr>
<td>Broken rice</td>
<td>Reconstituted rice, Extruded products</td>
</tr>
<tr>
<td>Straw</td>
<td>Enzymes, Ethanol, Fermented feed, Particle boards</td>
</tr>
<tr>
<td>Wheat</td>
<td></td>
</tr>
<tr>
<td>Bran</td>
<td>Soluble and insoluble fiber, Animal feed</td>
</tr>
<tr>
<td>Germ</td>
<td>Germ oil, Vitamin E</td>
</tr>
<tr>
<td>Straw</td>
<td>Cellulose, Oligosaccharides, Animal feed</td>
</tr>
<tr>
<td>Maize</td>
<td></td>
</tr>
<tr>
<td>Corn cob</td>
<td>Xylitol, Yeast autolysate</td>
</tr>
<tr>
<td>Germ</td>
<td>Oil, Protein isolate, Concentrate</td>
</tr>
<tr>
<td>Straw</td>
<td>Ethanol, Animal feed, Particle boards</td>
</tr>
<tr>
<td>Pigeon pea</td>
<td></td>
</tr>
<tr>
<td>Hulls</td>
<td>Soluble and insoluble fiber, Animal feed</td>
</tr>
<tr>
<td>Broken</td>
<td>Dal analogues, extruded products, Animal feed</td>
</tr>
<tr>
<td>Commodity</td>
<td>Possible high value low volume products</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>Stalks</td>
<td>Cellulose, Particle board</td>
</tr>
<tr>
<td>Soybean</td>
<td></td>
</tr>
<tr>
<td>Soy meal</td>
<td>Fortified flour, protein isolate & concentrate, millet fortified extruded products, Daal analogues, Hydrolysate</td>
</tr>
<tr>
<td>Soy hulls</td>
<td>Cellulose powder</td>
</tr>
<tr>
<td>Guar</td>
<td></td>
</tr>
<tr>
<td>Guar gum</td>
<td>Guar gum derivatives</td>
</tr>
<tr>
<td>Germ</td>
<td>Protein isolates, Animal feed</td>
</tr>
<tr>
<td>Hulls</td>
<td>Animal feed</td>
</tr>
<tr>
<td>Mango</td>
<td></td>
</tr>
<tr>
<td>Peel</td>
<td>Pectin, Fibre, Anti-oxidants, Biofuel</td>
</tr>
<tr>
<td>Stone</td>
<td>Starch, Oil</td>
</tr>
<tr>
<td>Citrus</td>
<td></td>
</tr>
<tr>
<td>Peel</td>
<td>Peel oil, Flavonoids, Pectin, Limonoids</td>
</tr>
<tr>
<td>Tomato</td>
<td></td>
</tr>
<tr>
<td>Processing by-products</td>
<td>Lycopene, Tomato seed oil</td>
</tr>
<tr>
<td>Milk</td>
<td></td>
</tr>
<tr>
<td>Whey, Butter milk, Ghee residue</td>
<td>Protein hydrolysates, Lactoferrin, Mannitol, Glycooligosaccharides</td>
</tr>
<tr>
<td>Colostrum</td>
<td>Immunoglobulin fraction, Glycomacropeptides, Colostrum powder, Phospholipid rich fraction</td>
</tr>
<tr>
<td>Meat and poultry</td>
<td></td>
</tr>
<tr>
<td>Poultry waste</td>
<td>Amino peptidases (from chicken intestine)</td>
</tr>
<tr>
<td>Buffalo by-products & waste</td>
<td>Fish feed ingredient (from rumen waste)</td>
</tr>
<tr>
<td></td>
<td>Protein hydrolysates, Bioactive peptides, Neat’s foot oil, Ossein (from liver, meat trimmings, feet and bones)</td>
</tr>
<tr>
<td>Fish</td>
<td></td>
</tr>
<tr>
<td>Fish head</td>
<td>Fish head stock</td>
</tr>
<tr>
<td>Fish eye</td>
<td>Omega-3 fatty acid</td>
</tr>
<tr>
<td>Mixed fish waste</td>
<td>Protein hydrolysates</td>
</tr>
<tr>
<td>Mixed fish waste</td>
<td>Meal and oil</td>
</tr>
<tr>
<td>Fish scale</td>
<td>Dried scale as a raw material for collagen industry, Collagen, Gelatin, Collagen peptide, Hydroxyapatite, Fish scale mineral, Di-calcium Phosphate</td>
</tr>
<tr>
<td>Commodity</td>
<td>Possible high value low volume products</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Fish skin</td>
<td>Collagen, Gelatin, Collagen peptide, Fish skin extracellular matrix, fish glue</td>
</tr>
<tr>
<td>Fish swim bladder</td>
<td>Fish maw, Collagen, Gelatin, Collagen peptide</td>
</tr>
<tr>
<td>Fish fins</td>
<td>Ingredients for soup, Collagen, Gelatin, Collagen peptide, Di-calcium Phosphate</td>
</tr>
<tr>
<td>Fish Viscera</td>
<td>Enzymes, Protein hydrolysates</td>
</tr>
<tr>
<td>Fish bone</td>
<td>Fish calcium, Bone-meal, Collagen, Gelatin and collagen peptide, Bone oil</td>
</tr>
<tr>
<td>Shrimp head waste/Shrimp shell waste</td>
<td>Chitin, Chitosan, Glucosamine hydrochloride, chitosan salts, water soluble chitosan, chitooligomers, shrimp meal, shrimp oil, carotenoproteins, Astaxanthine, Pigments, Other chitin and chitosan based derivatives</td>
</tr>
<tr>
<td>Mixed squid waste</td>
<td>Protein paste, protein hydrolysates, feed attractant</td>
</tr>
<tr>
<td>Mixed cuttlefish waste</td>
<td>Protein paste, protein hydrolysates, feed attractant</td>
</tr>
<tr>
<td>Cuttlefish bone and squid pen</td>
<td>Bone powder, dried cuttle bone, squid pen powder, chitin and chitosan</td>
</tr>
<tr>
<td>Ink sac from cephalopods</td>
<td>Melanin, antioxidant peptides, Soup ingredient, flavourings</td>
</tr>
<tr>
<td>Shuck water</td>
<td>Protein concentrate, natural peptides, flavourings</td>
</tr>
<tr>
<td>Shells from Oyster, clam, mussels</td>
<td>Calcium, Chitin, fillers for packaging materials, fillers in concrete and road making</td>
</tr>
<tr>
<td>Skin from cuttlefish and squid</td>
<td>Collagen, gelatin, collagen peptide, gelatin hydrolysates, skin protein hydrolysates, extracellular matrix</td>
</tr>
<tr>
<td>Fish frame waste</td>
<td>Protein isolate, protein hydrolysates, Protein concentrate</td>
</tr>
<tr>
<td>Fish belly flaps</td>
<td>Fish oil</td>
</tr>
<tr>
<td>Shark bone</td>
<td>Cartilage powder, chondroitin sulphate</td>
</tr>
<tr>
<td>Shark liver</td>
<td>Liver oil, Squaline</td>
</tr>
<tr>
<td>Fish skin</td>
<td>Fish skin leather and products</td>
</tr>
<tr>
<td>Shark fin</td>
<td>Shark fin rays</td>
</tr>
<tr>
<td>Tail of skates and rays</td>
<td>Dried sticks for pets</td>
</tr>
<tr>
<td>Whole waste from small fishes</td>
<td>Fish and poultry feed</td>
</tr>
<tr>
<td>Mixed fish waste</td>
<td>Fish silage, fish ensilage, fish amino acid, fish hydrolysates (liquid and powder)</td>
</tr>
<tr>
<td>Meat recovered from fish waste</td>
<td>Edible products, coated products, Fish flour, Surimi</td>
</tr>
<tr>
<td>Fish scale</td>
<td>Pearl essence</td>
</tr>
<tr>
<td>Mixed fish waste</td>
<td>Fish fertilizer, fish manure, fish compost</td>
</tr>
</tbody>
</table>
from China and European countries. Out of 90 % APIs 80 % of them are imported from China only to meet the country's needs. The country's pharmaceutical sector is heavily dependent on imports and the government is trying hard to reduce such imports. Tertiary and quaternary level processing will greatly help in this endeavor. Policy for promotion of Secondary Agriculture, therefore, is the need of the hour in the country. Following is a list of possible high value products which can be derived from different secondary agriculture resources. This, however, is by no means the complete list, as the characterization of many agricultural products is still awaited.

Some examples of secondary agriculture are listed here:

a. A cotton ginning unit, to separate lint and seed from locally grown cotton, using local human resources and within norms for capital investment under MSME rules would be qualified as secondary agriculture.

b. A jaggery making unit, in the sugarcane growing area.

c. A cottage scale unit employing local labour at a village, to create jams, pickles, chips, khadi products, etc

d. A cashew processing unit that shells, salts and packages the cashew from its neighbourhood growers.

e. If paddy is harvested, threshed, cleaned, dried and stored for marketing is not a secondary Agriculture activity. Processing of stored paddy to rice and further high value products however is secondary agriculture.

Some typical examples of converting agri-produce into variety of primary, secondary, tertiary and quaternary products are shown below:
Fish By-products

- Protein based health formulations
- Chitooligosaccharides
- Enzyme formulations
- Collagen concentrate
- Muscle protein derived peptides
- Omega-3 concentrate

Citrus by-products

Droppings: 30-40% of total yield
Recovery of pectin: 250 g per kg of dried

Nascent kinnow fruits

Dried nascent fruits

High value Medicinal compounds
- Hesperidin
- Diosmin
- Rutin

Activated carbon

Functional compounds

Raw materials

Drying

Dried citrus peel

Peel powder

Oil food supplements
It is noteworthy that many high value compounds intended to be extracted from conventionally processed products or their by-products are imported for commercial use in India. The industries producing high value products from crop residues and agro-industry by-products, such as pure proteins, modified starches, derivatives of guar gums & castor oil, enzymes, bio-chemicals, nano-materials, health promoting compounds and active pharmaceutical ingredients are in the nascent stage, and these products are mainly imported for specific use. The indicative list of the import of important high value compounds pertaining to the above-mentioned categories for the year 2020-21 is presented in Table 3.

It indicates that the annual value of the imports of these commodities stood at Rs 14,879.14 crore, during the year 2020-21.

SECONDARY AGRICULTURE: CHALLENGES

The average land holding in India is 1.08 ha. Collection of the crop residue and by-products therefore are difficult and often not sufficient enough to process them for any kind of value-added products. Similarly, the processing units in India are mainly of small capacities and the quantity of by-products is not sufficient to convert them into high value compounds economically.
<table>
<thead>
<tr>
<th>No.</th>
<th>HS code</th>
<th>Description</th>
<th>Value in Rs Lakh (2020-21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>11</td>
<td>Products of the milling industry; malt; starches; inulin; wheat gluten.</td>
<td>49,283.94</td>
</tr>
<tr>
<td>2.</td>
<td>13</td>
<td>Lac; gums, resins and other vegetable saps and extracts</td>
<td>189,143.42</td>
</tr>
<tr>
<td>3.</td>
<td>33</td>
<td>Essential oils and resinoids; perfumery, cosmetic or toilet preparations</td>
<td>512,719.58</td>
</tr>
<tr>
<td>4.</td>
<td>35</td>
<td>Albuminoidal substances; modified starches; glues; enzymes.</td>
<td>403,315.48</td>
</tr>
<tr>
<td>5.</td>
<td>2936</td>
<td>Provitamins and vitamins, natural or reproduced by synthesis (including natural concentrates), derivatives thereof</td>
<td>153,250.06</td>
</tr>
<tr>
<td>6.</td>
<td>1702</td>
<td>Other sugars, including chemically pure lactose, maltose, glucose and fructose, in solid form; sugar syrups not containing added flavouring or colouring matter, artificial honey, whether or not mixed with natural honey; caramel lactose and lactose syrup</td>
<td>72,325.61</td>
</tr>
<tr>
<td>7.</td>
<td>2102</td>
<td>Yeasts (active/inactive); other single cell micro-organisms; dead (but not incl vaccines of heading no 3002); baking powders</td>
<td>20,011.59</td>
</tr>
<tr>
<td>8.</td>
<td>210610</td>
<td>Protein concentrates and textured protein Substances</td>
<td>19,045.56</td>
</tr>
<tr>
<td>9.</td>
<td>29232010</td>
<td>Lecithins</td>
<td>22,002.58</td>
</tr>
<tr>
<td>10.</td>
<td>293930</td>
<td>Caffeine and its salts</td>
<td>5,380.23</td>
</tr>
<tr>
<td>11.</td>
<td>29397910</td>
<td>Nicotine</td>
<td>144.74</td>
</tr>
<tr>
<td>12.</td>
<td>391231</td>
<td>Carboxymethylcellulose and its salts</td>
<td>41,291.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>1,487,914.57</td>
</tr>
</tbody>
</table>

Source: Dept. of Commerce, Ministry of Commerce and Industry, Govt. of India

The Indian agro-based industries are primarily producing food products from main agricultural produce through primary, secondary and tertiary processing whereas by-products of food industries (such as de-oiled cake, by-products of pulse millings, cereal industry by-products and low-grade stored cereals, by-products of fruits-vegetables industries, by-products of fibre processing industry etc.) are either processed for animal feed in a rudimentary form or thrown away as waste or to make compost. Many appropriate technologies for such activities are either available or are being attempted for the same. Establishment of agri-processing centres or secondary Agriculture unit is however may not be possible for individual farmers particularly by small and marginal ones. This is possible if an Agro-processing
and Marketing Yard (APMY) is established in each village or in every Panchayat either in PP mode or by the Government or some other agencies with partnership of farmers, may be in cooperative mode. For this purpose, first we should have de-centralized storage and controlled raw material movement at village level APMY, panchayat level storage/ godown, block level food bank, district level warehouses, and finally state level grain/by-products warehouses, respectively. Surplus produce of any state could be procured by consuming state and stored at state level grain warehouse. Hence, each district, block and panchayat should have warehouses/godowns for their produces. At panchayat level it may be called a food or agri-produce/by-products bank. Farmers can deposit their produce in these banks, and get any other produce of equivalent value for their consumption, if needed. Surplus items should be used for processing, value addition, labelling and marketing locally or in the national markets through e-NAM/online marketing systems to be established in processing yard, which can be designated as Village Economic Zone (VEZ) or Panchayat Economic Zone (PEZ).

Each VEZ of PEZ may comprise of processing and value addition units for food grain, oilseeds & pulses; fruits & vegetables; milk & milk products; sugarcane/ jaggery; feed, fodder and fibre (including by-products processing and power/ energy generation); local artisan/arts & craft centre and at least one IT hub. These VEZs/PEZs can employ youths of the villages and create employment opportunities locally, particularly for women. If at least one person from each needy household is employed and gets assured salary from these VEZs/PEZs economic conditions of villages may improve significantly. However, there are several constraints and challenges restricting SA in India. Those constraints and challenges are summarised as under:

✦ Lack of baseline data on availability and quality of secondary raw materials from processing activities
✦ Lack of awareness on possible utilization of food processing waste
✦ Highly scattered nature of domestic market of food waste
✦ Non-availability of prime quality raw material
✦ Availability of certain processing industries only in certain regions
✦ Huge transportation cost of by-products collection and handling from multiple points.
✦ Need of cold chain facilities for highly perishable raw materials
✦ Lack of cold chain hubs which support the logistics
Lack of quality indigenous plants and machineries.

Need of high initial investment and operational cost to establish new processing plants.

Uncertain demand in domestic market.

Lack of industries-research institutions participations in research and technology development on secondary agriculture.

Lack of private-public participations in promoting SA.

Obscure trade policies and barriers.

Absence of focused policies to promote secondary agriculture and export.

Absence of focused policies to promote domestic marketing of products developed from secondary agriculture.

Lack of proper third-party quality testing facilities to ensure quality and safety of the products of SA.

Sporadic information on demand and supply of products of SA in national and international markets.

Production and marketing of high value compounds at internationally competitive prices.

OPPORTUNITIES IN SECONDARY AGRICULTURE

In order to have an idea of the opportunities in Secondary Agriculture, it is important to look at the broad categories of food and non-food secondary agriculture products. These can be categorized under the following groups from their application point of view:

- Absorbents/adsorbents
- Activated carbon
- Adhesives
- Agricultural chemicals
- Alternative fibers /bonded fabrics /textiles
- Bio-based fuels such as ethanol and bio-diesel
- Gases – methane/ CO$_2$
Bio-plastics/polymers/films
Agro-based construction and composite materials - Panels, Laminates, Composites, Hardware
Biofilters
Cleaning chemicals, surfactants, soaps, detergents
Enzymes, vitamins
Foods, beverages, nutrients
Fuel additives
Fertilizers, Phyto stimulants, Plant growth regulators
Inks, dyes, pigments
Landscaping materials/ soil amenders
Lubricants/rust inhibitors/functional fluids
Oils, waxes, binders, stabilizers
Biomass-based packaging materials
Organic paints/coatings
Nutraceuticals
Soil remediation, biofertilizers and biocides
Organic solvents & co-solvents
Specialty chemicals, fatty and acetic acid, sweeteners
Paper & paper products from non-conventional sources
Water & waste water treatment products with agricultural origin

These groups are quite broad and may include multiple products sourced from different raw materials obtained from primary agriculture.

Below is the description of some of the individual products of secondary agriculture, their benefits, applications and raw materials:

Isoflavones from Soybean: Isoflavones present in soybean possess anti-fungal and antioxidant properties. It is used in health products. Total isoflavone content in
soybeans ranges from 1.26 – 3.88 mg/g seed, whereas its concentration is more in the germ than in the cotyledons. Isoflavones are used as health supplements. Separation of germ and extraction of isoflavones and making products with isoflavones ranging from 20 to 70 per cent are available internationally.

Raffinose and Stachyose: Oligosaccharides constitute about 5% of the soybean. The two principal soy-oligosaccharides are raffinose and stachyose. They are marketed as dietary supplements and added to functional foods. These prebiotics may have anticarcinogenic, antimicrobial, and glucose-modulatory activities.

Saponins: Saponins are present in soybean as a minor constituent (05 – 5.0 %) depending upon the varieties of the soybean. Saponins are recognized to have beneficial effects in the diet as functional ingredients in lowering blood cholesterol, preventing cancer and stimulation of immunity.

Soy Lecithin: Lecithin is one of the most important byproducts of soybean oil refining industry. It is about 1.5 – 2.5 % of the oil. Lecithin has various uses including almost all the food industries, paint, varnish and cosmetic industry.

Vitamins and tocopherols: Around 2.5 % of the wheat kernel weight is germ, which is a good source of vitamin B-complex and trace minerals. It is also a rich source of Vitamin E (oil soluble).

Enzymes: A number of enzymes used industrially can be found in the cereal grains. Lipase is found in wheat germ, bran as well as in oat hulls (Rajeshwara and Prakash 1994). Lipase is used in the food industry as flavour enhancer and in detergents for the improvement of cleaning action. Lectins, acid phosphatase, Beta-amylase inhibitor is extracted from wheat and barley. Beta-amylase and xylanase are present in cereal brans and pulse husks. In addition, protease, laccase, peroxidase and poly phenol oxidase (PPO) are present in significant amounts in green gram husks and wheat germ. Amylase, xylanase, alpha glucosidase and ferulic acid esterase are used in brewing, bread making, confectionery, and health food industries. Peroxidase from soy husk has significant industrial use.

Rice straw: Disposal of rice straw has become a major problem in grain growing states of India. Rice straw has many uses. In Thailand, approx. 10 % of the straw is utilized as a medium to grow mushrooms, 50 % for animal feed, 30 % in paper making and the rest is burnt as fuel. Rice husk can be compressed into briquettes for fuel and power generation (Lonia 2005). If carbonized, these briquettes become high-quality charcoal. Activated charcoal has many potential industrial uses. Rice straw can be burnt in high efficiency furnaces and the ash produced is a good source of potash as a fertilizer.
Corn starch: Corn starch can be converted into ethanol (bioethanol), biodegradable plastic and additives for the pharmaceutical, paper, cosmetics, and food industry. Dextrose is a pure crystalline sugar obtained from corn starch using enzymatic reactions. Dextrose has many food, pharmaceutical and industrial applications. HFCS is used in food industry as a replacement of sugar in beverages.

Other corn products: Corncob can be converted into xylitol, a low-calorie sweetener. Adhesives, baking mixes, caramel color, destrin, emulsifiers, polyols and sorbitol etc. are some of the other products obtained commercially from corn.

Dietary fibre: Dietary fiber is a group of plant polysaccharides not digested by human digestive enzymes. However, they have many nutritional benefits. These dietary fibers consist of polysaccharides such as arabinoxylans, 1,3/1,4-beta-D-glucans, arabino-galactoproteins and cellulose. These are much in demand as food supplements for their use as probiotics. These compounds can be isolated from the cereal bran and pulse husks by appropriate methods for various end uses.

Phenolic compounds: Cereal brans and pulse husks are rich in phenolic compounds such as ferulic acid, coumaric acid, caffeic acid and tannins. Ferulic acid is the precursor of the flavour compound vanillin, vanillic acid etc.

Phytosterols from vegetable oils: Phytosterols such as stigmasterols, beta-sitosterols and campesterol obtained during refining of vegetable oils are in high demand as nutraceuticals.

Tocotrienols from rice bran oil: Tocotrienols, the isomers of tocopherols are similar to Vit E. The other source of these is palm oil. These have many health benefits in preventing stroke induced injuries, reverse the arterial blockage, reduce cholesterol and reduce the risk of type-2 diabetes.

There is a huge potential to make high value secondary agriculture products from grain/oil by-product processing industries.

Natural food colors and dyes: A few commonly used natural colors are Annatto (seed), turmeric, bet juice, red cabbage, spinach (leaf) etc. In view of increased restrictions on the use of synthetic colors, natural colors are being sought for food and non-food sources. Many natural colors including curcumin, beta-carotene, lutein, and lycopene have, in addition to coloring property, pronounced health benefits.

Anthocyanins: These are a class of flavonoids, permitted to be used as food additive with E number 163. These are abundant in most fruits and vegetables, which are colored blue to red. They are relatively more stable than most other natural colors.
Plant growth promoter n-Triacontanol: Waxes from tea waste, rice bran, and sugarcane press mud (SCPM) are important sources of n-triacontanol, which has a marked effect on foliar growth at as low as 1-5 ppm.

Solanesol: It is an anti-hypertensive, anti-hyperlipidemic, and anti-tumour agent being made in China, Japan etc. It is also used as a starting material in synthesis of high-value chemicals such as Vitamin K analogues and Co-enzyme Q10. It is extracted from tobacco leaves.

Recently, many new compounds such as vitamin C, biotin, astaxanthin, isoleucine, zeaxanthin, lutein, ethyl lactate, polyols, organic acids, biodegradable plastics, etc. have been added to the products of Secondary Agriculture.

It is amply evident from the foregoing description that the potential of Secondary Agriculture in India is huge. Promoting SA in India will reduce its dependence on imports, push exports and create more industries and employment opportunities in the country.

The Secondary Agriculture may be categorized into three types according to the nature/type of production units:

i. **Feeder Units in production catchments:** Segregation and conversion of bio-mass/by-products in dense and storable form is done through primary unit operations (sorting, drying, pulverization, densification, packaging). The units for crop residues are of small capacities, designed for handling multiple biomasses to ensure round the year operation, and are established in the production catchments. Establishing call centers or Ola/Uber type models may be tried for collection and transportation of raw materials from villages to processing centers. This can be an independent enterprise at the block or panchayat level.

ii. **Secondary processing units for high value compounds production:** Relatively large capacity extraction units to separate high value components from the biomass/by-products with feed/composting units. These enterprises will get the raw material from the feeder units and have facility for processing multiple biomasses. There is a need to establish agro-processing units near the collection centers at block or district level.

iii. **Specialty product units:** Enterprises that separate high value compounds and prepare products as per the demand of consumers of domestic or global markets. These enterprises will be the main customer base for secondary agriculture outputs. These could be established at places where the marketing potential can be tapped fully.
The key to the success of SA is flow of raw materials from villages to panchayat to block to district and then finally to Enterprises of Secondary Agriculture (ESA) for making use of residues and wastes. For example, in case of citrus green, immature droppings are to be dried, pulverized and stored in feeder units; extraction of medicinal compounds is to happen in the secondary units, and finally, use in medicines is to be done by the specialty units. In case of citrus processing by-products, separation of seed and pomace, drying and pulverization in feeder units, pectin extraction will be carried out in secondary units; and use of pectin as thickener will be by ketchup industry. Similarly, maize cobs will be dried and pulverized in feeder units, extraction of xylitol in secondary units, and preparation of sugar-free products is to be undertaken by the specialty units. This is further elaborated below with examples with fish and makhana processing.

FISH PROCESSING

The Indian fish processing industries are primarily producing fish and shellfish products. They are often eviscerated and exported in the frozen form. The by-products generated during processing are processed into meal, which is utilized as protein ingredient for the production of animal and poultry feed, or converted into manure for agriculture applications or more often, thrown away as discards. The industries producing high value products from fish waste/by-products, such as pure proteins (collagen, gelatin, collagen peptide, protein isolate, hydrolysate), carbohydrates (chitin and chitosan derivatives), PUFA-rich oil, enzymes, biochemicals, nano-materials, health promoting compounds, active pharmaceutical ingredients etc. are in the infant stage, and these products are possessing domestic consumption as well as export potential. Appropriate indigenous technologies for producing aforementioned high value products are either available or under development. Its promotion needs capital investment and support through focused programme.

MAKHANA PROCESSING

The popped makhana contains 11.03% easily absorbable protein with a unique assemblage of different amino acids having anti-aging properties. It contains appreciable amount of immune-modulating amino acids, arginine and methionine, which are essential for the beauty of skin, nails and hairs. Taurine synthesized from cysteine reduces diabetic effect in cell. Arginine, which produces nitric oxide within the cell, increases the elasticity of arteries and veins, thereby increasing blood flow. Other amino acids like iso-leucine and proline help in growth and
development of the body. In view of these benefits, there is ample scope for *makhana* based secondary agriculture in India

WAY FORWARD

The task of promoting secondary agriculture especially focussed for the benefit of farmers and rural industry needs concerted efforts from different stakeholders viz., Academia, Researchers, Policy makers, Financial organizations, Existing operators like farmers, aggregators, agro-industries etc. Following are suggested for promoting Secondary Agriculture:

1. A comprehensive database on the availability of various raw materials and their quality at different hot spots including primary production sites, location of processing industries and local markets needs to be prepared.

2. Characterization of different produce, crop residues, agro industrial by-products, discovery of high-end-products need urgent action. The concerned research institutions both public and private have to build strategically designed research programs. Dedicated networks of labs and scientists are to be developed in multi-disciplinary mode to explore the un-explored crops/residues/by-products

3. The process innovation as well as product innovation are to be rigorously promoted through financial support to target oriented focussed projects. Technology customization for high value products from secondary raw materials will also require adequate attention and financial support.

4. Different models of value chain (single input multiple output, multiple input single output) and their economic feasibility have to be worked out for adoption and adequate financing.

5. Industry partnership needs to be built starting from product development till large scale manufacturing and commercialization. Engagement of MSME and large industries, depending on the scope in manufacturing of high value products at appropriate locations is to be promoted with adequate Govt. support/facilitation.

6. In certain situations, the establishment of SFP involving SHGs/societies to own and operate specific industrial products in collaboration with research organizations and private companies would be desirable.

7. The mechanism for systematic certification and labeling of products and machines should be increased. A certification program for the primary processing units is required to be introduced for encouraging responsible waste utilization.
8. Technology demonstration units (pilot scale) for handling of secondary raw materials and processing into high value products are to be establish to attached entrepreneurs and investors.

9. Support for establishment of secondary agriculture activities is to be explored under the existing Govt. schemes on Crop Residue Management and waste utilization, or though separate government supported schemes. A dedicated budget provision to the tune of Rs. 5000 crores should be made to support circular economy through secondary agriculture.

10. For promoting export, market studies are to be conducted in order to understand the consumer needs at the global level for new products based on robust scientific evidence with regards to their health nutrition benefits. Creation of large scale awareness would be essential both in India and abroad.

SA not only brings profits but also helps solve the problem of pollution and indiscriminate disposal of crop & agro processing residue. Right scaling of technology so that output is economically competitive/ viable; this also ensures full capacity utilization of the enterprises engaged in secondary processing activities.

REFERENCES

List of Participants

1. Dr T. Mohapatra, Secretary, DARE & DG, ICAR & President, NAAS, Delhi
2. Dr Mangala Rai, Past President, NAAS & Former Secretary, DARE & DG, ICAR, Varanasi
3. Dr Anil Singh, Vice President, National Academy of Agricultural Sciences, Delhi
4. Dr P.K. Joshi, Secretary, NAAS, Delhi
5. Prof K.C. Bansal, Secretary, NAAS, Gurgaon
6. Dr Malavika Dadlani, Editor, NAAS, Delhi
7. Dr Shyam Narayan Jha, ADG (PE), ICAR, Delhi
8. Dr Ghan Shyam Abrol, Assistant Professor, RLBCAU Jhansi, Jhansi
9. Dr Nawab Ali, Former DDG (Engg.), ICAR, Navi Mumbai
10. Mr B. Ananda Babu, IFS, Additional Managing Director, CG MFP Federation, Raipur
11. Mr P.K. Bhardwaj, GM, NABARD, Chandigarh
12. Ms Trupti Bhat, Co Convener Women’s Cell, CASMB, Thane
13. Ms Arpita Bhattacharjee, DGM, NABARD, Chandigarh
14. Dr Pitam Chandra, Former Director, ICAR-CIAE, Greater Noida
15. Mr Prakash Chawla, Director, Samyog Health Foods Pvt Ltd, Mumbai
16. Mr Ankit Dahiya, CGM Secretariat, NABARD, Chandigarh
17. Dr Suresh Devatkal, Principal Scientist, ICAR-NRC on Meat, Hyderabad
18. Dr Krishna Ella, Chairman & Managing Director, Bharat Biotech International Limited, Hyderabad
19. Dr Ishita G. Tripathy, Additional Development Commissioner, DC-MSME, Ministry of MSME, Delhi
20. Dr Venkateshwarlu Gudipati, Joint Director, ICAR-NAARM, Hyderabad
21. Dr Kriti Bardhan Gupta, Associate Prof., Indian Institute of Management, Lucknow
22. Dr J.K. Jena, DDG (Fisheries), ICAR, Delhi
23. Dr D.C. Joshi, Vice Chancellor, Agriculture University, Kota
24. Dr Abhijit Kar, Director, NISA, Ranchi
25. Mr Kaushlendra, ED, KAUSHALYA Foundation, Patna
26. Mr Rupesh Khiste, Project Head, Sahaydri Farms, Nashik
27. Dr Srinivas Kondapi, ADG, NAARM-TBI, a-IDEA, Hyderabad
28. Dr Nachiket Kotwaliwale, Director, ICAR-CIPHET, Ludhiana
29. Dr Ranjit Kumar, Head, ICAR-NAARM, Hyderabad
30. Dr Sanjay Kumar, Director, CSIR-IHBT, Palampur
31. Mr Nilesh Lele, President, Chamber for Advancement of Small & Medium Businesses, Mumbai
32. Dr Sudha Mysore, CEO, Agrinnovate India Limited, Delhi
33. Mr Sriram Narayanamurthy N., Founder, MilletCraft, Chennai
34. Dr Krishnan Pandian, Principal Scientist, ICAR-NAARM, Hyderabad
35. Dr R.T. Patil, Former Director, ICAR-CIPHET, Ludhiana
36. Dr Ch. Srinivasa Rao, Director, ICAR-NAARM, Hyderabad
37. Dr C.N. Ravishankar, Director, ICAR-CIFT, Cochin
38. Dr G. Taru Sharma, Head, Division of Physiology and Climatology, ICAR-IVRI, Izatnagar
39. Dr A.K. Singh, Director, ICAR-Indian Agricultural Research Institute, Delhi
40. Dr Krishna Kumar Singh, Member, Agricultural Scientists Recruitment Board, Delhi
41. Dr Meenakshi Singh, Chief Scientist, CSIR, Government Institution, Delhi
42. Dr Randhir Singh, ADG (Extn), ICAR, Delhi
43. Dr Rajiv Siwach, Chief General Manager, NABARD, Chandigarh
44. Dr Srinivas Tavva, Principal Scientist, ICAR-NAARM, Hyderabad
45. Dr Abhay Kumar Thakur, Principal Scientist, Agril. Engg. Division, ICAR, Delhi
46. Dr R. Visvanathan, Retired Professor, TNAU, Coimbatore

Note: The designations and affiliations of the participants are as on the date of BSS.
65. Climate Resilient Agriculture in India
66. Role of Millets in Nutritional Security of India
67. Urban and Per-Urban Agriculture
68. Efficient Utilization of Phosphorus
69. Carbon Economy in Indian Agriculture
70. MGOC for Capacity Building in Indian Agriculture: Opportunities and Challenges
71. Role of Root Endophytes in Agricultural Productivity
72. Bioinformatics in Agriculture: Way Forward
73. Monitoring and Evaluation of Agricultural Research, Education and Extension for Development (AREE4D)
74. Bio-drainage: An Eco-Friendly Tool for Combating Waterlogging
75. Linking Farmers with Markets for Inclusive Growth in Indian Agriculture
76. Bio-fuels to Power Indian Agriculture
77. Aquaculture Certification in India: Criteria and Implementation Plan
78. Reservoir Fisheries Development in India: Management and Policy Options
79. Integration of Medicinal and Aromatic Crop Cultivation and Value Chain Management for Small Farmers
80. Augmenting Forage Resources in Rural India: Policy Issues and Strategies
81. Climate Resilient Livestock Production
82. Breeding Policy for Cattle and Buffalo in India
83. Issues and Challenges in Shifting Cultivation and its Relevance in the Present Context
84. Practical and Affordable Approaches for Precision in Farm Equipment and Machinery
85. Hydroponic Fodder Production in India
86. Mismatch between Policies and Development Priorities in Agriculture
87. Abiotic Stress Management with Focus on Drought, Flood and Hallstrom
88. Mitigating Land Degradation due to Water Erosion
89. Vertical Farming
90. Zero Budget Natural Farming - A Myth or Reality?
91. Loan Waiving versus Income Support Schemes: Challenges and Way Forward
92. Tropical Wilt Race-4 Affecting Banana Cultivation
93. Enhancing Science Culture in Agricultural Research Institutions
94. Payment of Ecosystem Services
95. Food-borne Zoonotic Diseases
96. Livestock Improvement through Artificial Insemination
97. Potential of Non-Bovine Milk
98. Agriculture and Food Policy for the Five Trillion Dollar Economy
99. New Agricultural Education Policy for Reshaping India
100. Strategies for Enhancing Soil Organic Carbon for Food Security and Climate Action
101. Big Data Analytics in Agriculture
102. WTO and Indian Agriculture: Issues, Concerns, and Possible Solutions
103. Antimicrobial Resistance
104. One World One Health
105. Sugarcane-based Ethanol Production for Sustainable Fuel Ethanol Blending Programme
106. Utilization of Wastewaters in Urban and peri-Urban Agriculture
107. Certification of Clonally Propagated Fruit Crops For Promoting Agricultural Diversification
108. Agri-Startups in India: Opportunities, Challenges and Way Forward
109. Emergency Preparedness for Prevention of Transboundary Infectious Diseases in Indian Livestock and Poultry
110. Strategies and Approaches for Promotion of Sustainable Bovine Sericulture in India
111. Food Fortification: Issues and Way Forward
112. Gender and nutrition based Extension in Agriculture
113. Contract Farming for Transforming Indian Agriculture
114. Promoting Millet Production, Value Addition and Consumption
115. Waste to Wealth – Use of Food Waste as Animal Feed and Beyond
116. Sustaining the Pulses Revolution in India: Technological and Policy Measures
117. Road Map for Rehabilitation of 26 Mha Degraded Lands In India
118. Entrepreneurship for Quality Fodder Production

Status / Strategy Papers

1. Role of Social Scientists in National Agricultural Research System (NARS)
2. Towards Self-sufficiency of Pulses in India
3. Strategy for Transformation of Indian Agriculture for Improving Farmers Welfare
4. Sustaining Soybean Productivity and Production in India
5. Strengthening Agricultural Extension Research and Education - The Way Forward
7. Vegetable Oil Economy and Production Problems in India
8. Conservation Policies for Hilsa and Mahseer
9. Accelerating Seed Delivery Systems for Priming Indian Farm Productivity Enhancement: A Strategic View Point
11. Rumen Microbiome and Amelioration of Methane Production
12. Harnessing Full Potential of A1 and A2 Milk in India: An Update
13. Development and Adoption of Novel Fertilizer Materials
14. Innovations in potato seed production
15. Potential of Transgenic Poultry for Biopharming
16. Need for Breeding Tomatoes Suitable for Processing
17. Biofortification to Address Malnutrition in India: Present Status and Way Forward
18. Drudgery Reduction in Agriculture through Improved Farm Machinery

Policy Briefs

1. To Accelerate Utilization of GE Technology for Food & Nutrition Security and Improving Farmers' Income
2. Innovative Viable Solution to Rice Residue Burning in Rice-Wheat Cropping System through Concurrent Use of Super Straw Management System-fitted Combines and Turbo Happy Seeder
4. Uniform Policy for Fish Disease Diagnosis and Quarantine
5. Saving the Harvest: Reducing the Food Loss and Waste
7. Regulatory Framework for Genome Edited Plants: Accelerating the Pace and Precision of Plant Breeding
9. Direct Benefit Transfer of Fertilizer Subsidy: Policy Perspectives
10. Harmonization of seed regulations for sustainable food security in India
11. Towards Revision of Biological Diversity Act 2002
12. Limitations of Global Hunger Index and Way Forward
13. Regulation for Genetically Modified (GM) Foods and Detection of Unauthorized GM Food Events
1. Agricultural Scientist’s Perceptions on National Water Policy 1995
5. Sustainable Agricultural Export 1999
6. Reorienting Land Grant System of Agricultural Education in India 1999
7. Diversification of Agriculture for Human Nutrition 2001
8. Sustainable Fisheries and Aquaculture for Nutritional Security 2001
10. Globalization of Agriculture: R & D in India 2001
11. Empowerment of Women in Agriculture 2001
13. Hi-Tech Horticulture in India 2001
15. Prioritization of Agricultural Research 2001
17. Scientists’ Views on Good Governance of An Agricultural Research Organization 2002
18. Agricultural Policy: Redesigning R & D to Achieve It’s Objectives 2002
20. Dichotomy Between Grain Surplus and Widespread Endemic Hunger 2003
22. Seaweed Cultivation and Utilization 2003
24. Biosafety of Transgenic Rice 2003
25. Stakeholders’ Perceptions On Employment Oriented Agricultural Education 2004
26. Peri-Urban Vegetable Cultivation in the NCR Delhi 2004
27. Disaster Management in Agriculture 2004
28. Impact of Inter River Basin Linkages on Fisheries 2004
29. Transgenic Crops and Biosafety Issues Related to Their Commercialization in India 2004
30. Organic Farming: Approaches and Possibilities in the Context of Indian Agriculture 2005
31. Redefining Agricultural Education and Extension System in Changed Scenario 2005
32. Emerging Issues in Water Management The Question of Ownership 2005
33. Policy Options for Efficient Nitrogen Use 2005
34. Guidelines for Improving the Quality of Indian Journals & Professional Societies in Agriculture and Allied Sciences 2006
35. Low and Declining Crop Response to Fertilizers 2006
36. Belowground Biodiversity in Relation to Cropping Systems 2006
37. Employment Opportunities in Farm and Non-Farm Sectors Through Technological Interventions with Emphasis on Primary Value Addition 2006
38. WTO and Indian Agriculture: Implications for Policy and R&D 2006
39. Innovations in Rural Institutions: Driver for Agricultural Prosperity 2007
41. Sustainable Energy for Rural India 2008
42. Crop Response and Nutrient Ratio 2009
43. Antibiotics in Manure and Soil A Grave Threat to Human and Animal Health 2010
44. Plant Quarantine including Internal Quarantine Strategies in View of Onslaught of Diseases and Insect Pests 2010
45. Agrochemicals Management: Issues and Strategies 2010
46. Veterinary Vaccines and Diagnostics 2010
47. Protected Agriculture in North-West Himalayas 2010
48. Exploring Untapped Potential of Acid Soils of India 2010
49. Agricultural Waste Management 2010
50. Drought Preparedness and Mitigation 2011
51. Carrying Capacity of Indian Agriculture 2011
52. Biosafety Assurance for GM food Crops in India 2011
53. Ecolabelling and Certification in Capture Fisheries and Aquaculture 2012
54. Integration of Millets in Fortified Foods 2012
55. Fighting Child Malnutrition 2012
56. Sustaining Agricultural Productivity through Integrated Soil Management 2012
57. Value Added Fertilizers and Site Specific Nutrient Management (SSNM) 2012
58. Management of Crop Residues in the Context of Conservation Agriculture 2012
59. Livestock Infertility and its Management 2013
60. Water Use Potential of Flood-affected and Drought-prone Areas of Eastern India 2013
61. Mastitis Management in Dairy Animals 2013
63. Nanotechnology in Agriculture: Scope and Current Relevance 2013
64. Improving Productivity of Rice Fallows 2013

*For details visit web site: http://naas.org.in

Continued on inside cover