Aquaculture Certification in India: Criteria and Implementation Plan
CONVENER: Dr Iddya Karunasagar, Ex-Senior Fishery Industry Officer, FAO, Mangalore, Karnataka

EDITORS: Dr K.K. Vass, Dr V.K. Gupta

REVIEWERS: Dr Gopinath, Dr C.N. Ravishankar, Dr S.D. Tripathi and Dr K.K. Vijayan

EXECUTIVE COUNCIL 2015

President:
Dr S. Ayyappan (Delhi)

Immediate Past President:
Prof R.B. Singh (Delhi)

Vice Presidents:
Dr P.L. Gautam (Palampur)
Prof Anupam Varma (Delhi/Palampur)

Secretaries:
Dr M.P. Yadav (Gurgaon)
Dr K.V. Prabhu (Delhi)

Foreign Secretary:
Dr S.M. Virmani (Hyderabad)

Editors:
Dr K.K. Vass (Noida)
Dr V.K. Gupta (Delhi)

Treasurer
Dr Himanshu Pathak (Delhi)

Members:
Prof S.P. Adhikary (Balasore)
Dr K.M. Bujarbaruah (Jorhat)
Dr (Ms.) Renu Khanna-Chopra (Delhi)
Dr M. Mahadevappa (Mysore)
Dr C.D. Mayee (Nagpur)
Dr T.A. More (Rahuri)
Dr Mruthyunjaya (Bengaluru)
Dr C.S. Prasad (Bengaluru)
Dr S.N. Puri (Imphal)
Dr Anil K. Singh (Gwalior)

Published by Mr H.C. Pathak, Executive Secretary on behalf of
NATIONAL ACADEMY OF AGRICULTURAL SCIENCES
NASC, Dev Prakash Shastry Marg, New Delhi - 110 012
Tel: (011) 25846051-52; Fax: (011) 25846054
Email: naas@vsnl.com; Web site: http://www.naasindia.org
The importance of aquaculture for meeting the global fish demand is widely recognized and according to FAO estimates, about half of global food fish production comes from aquaculture. India has been making rapid strides in both fresh water as well as brackish water aquaculture and is globally at second position in production after China. While India is becoming the major supplier of farmed shrimp to major global markets, we see that domestic market is also developing significantly. However, market requirements are also becoming more stringent. With the emergence of large supermarkets and retailers as major buyers of fish and fishery products, they are coming up with their own requirements, which are often referred to as non-regulatory requirements. They would like to demonstrate to their customers that the products they sell are safe, produced in a sustainable way and considering the environment and social factors. They demand certification of aquaculture by third parties and this has led to emergence of a number of private bodies that develop aquaculture standards, certification bodies. Proliferation of standard setting and certification bodies has led to problems for aquaculture producers, because they are only market driven. To address this issue, the Food and Agriculture Organisation of United Nations has come up with internationally accepted Aquaculture Certification Guidelines. National aquaculture certification schemes are expected to be harmonized with FAO Aquaculture Certification Guidelines.

In this context, the brainstorming session organized by National Academy of Agricultural Sciences with Dr. Iddya Karunasagar as the Convenor is very timely. Indian aquaculture scenario is very complex with diverse species and diverse environments involved. Developing a national certification scheme needs active participation by different institutions and this needs to be done in consultation with the stakeholders. I am happy to see that most of the potential institutions involved in aquaculture certification participated in brainstorming session. I very much appreciate participation from Bureau of Indian Standards, Quality Council of India, Marine Products Export Development Authority and Centers, Coastal Aquaculture Authority of India, Institutes of Indian Council of Agricultural Research, National Fisheries Development Board, Colleges of Fisheries and Private sector in this brainstorming session. I would like to thank the Convenor Dr. Iddya Karunasagar and Editors of NAAS per bringing this policy document.

S. Ayyappan
President
Aquaculture Certification in India: Criteria and Implementation Plan

1. INTRODUCTION

Fish is an important source of proteins, micronutrients, minerals and polyunsaturated omega-3 fatty acids required by the human population. Even fresh water carps that are widely consumed in Asia contain significant amounts of omega-3 fatty acids. Fish accounts for about 17% of animal protein supply to the global population and 6.5% of all protein (Thilsted et al., 2014). Thus fish plays an important role in meeting the nutrition security of the global population. However, fish supply is not uniform across the globe. In industrialised countries, the per capita food fish supply is 27.4 Kg per year, while in low income food deficit countries (LIFDC), it is 10.9 Kg and in least developed countries it is 11.5 Kg (FAO, 2014).

According to the FAO State of the World Fisheries and Aquaculture (2014), the global fish production was 158.00 million tonnes in 2012, of which, 91.3 million tonnes came from capture and 66.6 million tonnes came from aquaculture. In addition to food fish, 23.8 million tonnes of aquatic algae were produced in 2012 and the value of aquaculture production in 2012 has been estimated to be 144.4 billion US$. World fish supply reached 19.2 Kg per capita in 2012. Farmed fish accounted for 42.2% of global fish production and if only food fish are considered, the contribution of aquaculture goes up to 49%. It is estimated that by 2030, the contribution of aquaculture to global fish supply will increase to 60% (World Bank, 2013).

As indicated in Fig 1, global fish production by capture has been stagnating for over last two decades and aquaculture has been contributing to increasing fish supply. The growth of aquaculture was at an annual rate of 9.5% during 1990-2000 and 6.2% during 2000-2012.

Asia accounts for over 88% of global aquaculture production (Table 1). The production in top 10 countries is indicated in Table 2. In terms of volume, finfish accounted for the major species cultured in most countries. In Asia, most of these are produced in freshwater. Significant portions of these fresh water farmed fish are consumed domestically in producing countries and these contribute to the nutritional security of the people in these countries. Norwegian aquaculture is dominated by salmon production in marine waters. Chile is another major aquaculture producer farming salmon and bivalve molluscs in marine waters, mainly for export. In Thailand, half
Table 1. Aquaculture production in different regions of the world (adapted from FAO, 2014)

<table>
<thead>
<tr>
<th>Continent/Region</th>
<th>Aquaculture production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td></td>
</tr>
<tr>
<td>Production (tonnes)</td>
<td>81,015</td>
</tr>
<tr>
<td>Percentage</td>
<td>0.62</td>
</tr>
<tr>
<td>North America</td>
<td></td>
</tr>
<tr>
<td>Production (tonnes)</td>
<td>356,943</td>
</tr>
<tr>
<td>Percentage</td>
<td>2.73</td>
</tr>
<tr>
<td>Latin America</td>
<td></td>
</tr>
<tr>
<td>Production (tonnes)</td>
<td>179,367</td>
</tr>
<tr>
<td>Percentage</td>
<td>1.37</td>
</tr>
<tr>
<td>Asia</td>
<td></td>
</tr>
<tr>
<td>Production (tonnes)</td>
<td>10,801,537</td>
</tr>
<tr>
<td>Percentage</td>
<td>82.61</td>
</tr>
<tr>
<td>Oceania</td>
<td></td>
</tr>
<tr>
<td>Production (tonnes)</td>
<td>42,005</td>
</tr>
<tr>
<td>Percentage</td>
<td>0.32</td>
</tr>
<tr>
<td>Europe</td>
<td></td>
</tr>
<tr>
<td>Production (tonnes)</td>
<td>1,601,649</td>
</tr>
<tr>
<td>Percentage</td>
<td>12.25</td>
</tr>
<tr>
<td>World</td>
<td></td>
</tr>
<tr>
<td>Production (tonnes)</td>
<td>13,074,679</td>
</tr>
</tbody>
</table>

Fig. 1. Global fish production by capture, aquaculture and per capita fish supply (Source: FAO, 2014)
of aquaculture production is accounted by crustaceans, intended mainly for export. Egypt has mostly inland aquaculture with a very tiny quantity of crustaceans produced. Even in Myanmar, inland aquaculture dominates in volume, but crustacean production is also significant.

At global level, two thirds (44.2 million tonnes) of the 66.6 million tonnes of farmed fish produced were finfish species grown inland (38.6 million tonnes) and in the sea (5.6 million tonnes). Though the latter accounted for only 12.6% of aquaculture production by volume, they constituted 26.9% (23.5 billion US$) by value due to high value species like salmon. Similarly, though crustaceans accounted for only 9.7% (6.4 million tonnes) by volume, they represented 22.4% (30.9 billion US$) by value.

2. DEVELOPMENTS IN AQUACULTURE PRODUCTION IN INDIA

Aquaculture production in India grew from 17,910 tonnes in 1950 to over 4 million tonnes in 2012 (Fig 2).

The commodities produced in India in 2012 are illustrated in Fig 3. Fresh water carps constituted a major portion of the production (83%) followed by other freshwater fish (7.26%), shrimp (6.28%), marine fish (2%), freshwater prawn (0.72%) and molluscs (0.3%).

<table>
<thead>
<tr>
<th>Country</th>
<th>Finfish (Inland)</th>
<th>Finfish (marine)</th>
<th>Crustaceans</th>
<th>Mollusc</th>
<th>Others</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>23,341,134</td>
<td>1,028,399</td>
<td>3,592,588</td>
<td>12,343,169</td>
<td>803106</td>
<td>41,108,306</td>
</tr>
<tr>
<td>India</td>
<td>3,812,420</td>
<td>84,164</td>
<td>299,926</td>
<td>12,905</td>
<td>-</td>
<td>4,209,415</td>
</tr>
<tr>
<td>Vietnam</td>
<td>2,091,200</td>
<td>51,000</td>
<td>513,100</td>
<td>400,000</td>
<td>30,200</td>
<td>3,085,500</td>
</tr>
<tr>
<td>Indonesia</td>
<td>2,097,407</td>
<td>582,077</td>
<td>387,698</td>
<td>-</td>
<td>477</td>
<td>3,067,660</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>1,525,672</td>
<td>63,220</td>
<td>137,174</td>
<td>-</td>
<td>-</td>
<td>1,726,066</td>
</tr>
<tr>
<td>Norway</td>
<td>85</td>
<td>1,319,033</td>
<td>-</td>
<td>2001</td>
<td>-</td>
<td>1,321,119</td>
</tr>
<tr>
<td>Thailand</td>
<td>380,986</td>
<td>19,994</td>
<td>623,660</td>
<td>205,192</td>
<td>4,045</td>
<td>1,233,877</td>
</tr>
<tr>
<td>Chile</td>
<td>59,527</td>
<td>758,587</td>
<td>-</td>
<td>253,307</td>
<td>-</td>
<td>1,071,421</td>
</tr>
<tr>
<td>Egypt</td>
<td>1,016,629</td>
<td>-</td>
<td>1109</td>
<td>-</td>
<td>-</td>
<td>1,017,738</td>
</tr>
<tr>
<td>Myanmar</td>
<td>822,589</td>
<td>1,868</td>
<td>58,981</td>
<td>-</td>
<td>1,731</td>
<td>885,169</td>
</tr>
</tbody>
</table>

Table 2. Aquaculture production of various aquatic species by top ten countries (adapted from FAO, 2014)
Shrimp aquaculture has been commercially important for India. The growth of shrimp aquaculture in India is illustrated in Fig 4.

Shrimp aquaculture in India was hit by white spot syndrome virus (WSSV) in the mid 90’s and was showing a slow growth due to various disease problems. In 2009, India allowed import of Specific Pathogen Free (SPF) broodstock of Pacific white shrimp, *P. vannamei*. Since then, shrimp aquaculture has been showing steep growth (Fig 4). Presently, *P. vannamei* dominates shrimp production in India (Fig 5). Major vannamei producing states are Andhra Pradesh, Gujarat, Tamil Nadu and Odhisa. Production of black tiger shrimp is common in states like West Bengal and Odhisa, where extensive type of aquaculture is practiced.
India has been lucky to escape outbreak of Acute Hepatopancreatic Necrosis Virus Disease (AHPND) that drastically reduced shrimp aquaculture production in Vietnam and Thailand. Due to this reason, India is emerging as the leading shrimp producing nation in South Asia.
3. INTERNATIONAL TRADE IN FISH AND FISHERY PRODUCTS AND CERTIFICATIONS AS MARKET ACCESS REQUIREMENTS

Fish is one of the most highly traded food commodities. According to FAO, global trade of fish and fishery products reached $136 billion in 2013. European Union is the single largest market with imports valued at $46 billion in 2012 representing 36% of world imports. United States and Japan are competing for the second place. In 2012, Japan was second with imports valued at $18 billion, but in 2013, this declined by about 15% to $15.3 billion, while US reached $19 billion in 2013, up 8% from 2012 figures (FAO, 2014). Thus, EU, US and Japan together account for about 70% of international fish imports and most fish exporting countries are trying to access these markets. Import requirements in these countries are very stringent in terms of quality, safety and fair trade practices.

The World Trade Organisation Sanitary and Phytosanitary (SPS) and Technical Barriers to Trade (TBT) agreements provide a framework for international trade including that of fish and fishery products. These are based on principles of (a) sovereignty, (b) harmonization, and (c) equivalence. According to these agreements, WTO member countries have the right to take measures to protect animal health and consumer health, but these measures should not be arbitrary, but should be based on a scientific risk assessment performed according to internationally accepted practices. The member countries are to harmonise their standards by those adopted by international organisations. For food safety, Codex Alimentarius Commission standards and for animal heath, OIE standards have been recognized in the SPS agreement. Member countries may follow different procedures to achieve the standards and consumer protection, but as long as the same goal is reached by different procedures, they are to be recognized as equivalent. Conformity assessment is a procedure used directly or indirectly to determine that relevant requirements in standards and technical regulations are met. These may include inspection, evaluation, verification, sampling, testing, and assurance of conformity (e.g. certification or declaration), registration, accreditation and approval or combination of these.

Issues related to food safety such as food hygiene, maximum permissible limits for contaminants, residues of veterinary drugs are generally part of national regulations. Examples include EU regulations and USFDA regulations. In India, the Food Safety and Standards Authority of India (FSSAI) is responsible for developing and implementing national food safety related standards. Food safety and quality requirements that are part of national regulations are generally referred to as “regulatory requirements”.

Different importing countries adopt different practices for authorizing imports. The major trading block, EU has the system of authorizing imports from countries that are
able to comply with EU regulatory requirements. The EU requires that the national regulatory requirements are harmonized and equivalent to EU requirements. They rely on national competent authorities (CA) to ensure that food business operators (FBO) including primary producers and all operators along the food chain operate following requirements such as good hygienic practice (GHP), good manufacturing practice (GMP) and in processing establishments, hazard analysis critical control point (HACCP) based food safety management. They want traceability to be implemented at all stages of food chain, so that, when any deficiencies are observed, the affected batch can be recalled/withdrawn from the market, the source of the problem and the stage in the food chain identified and appropriate corrective action can be taken. The EU Food and Veterinary Office (FVO) makes visit to the countries to verify whether the FBOs and CA are functioning as per the requirement. Once they are convinced, the country is included in the list of third counties authorized to export fish to EU along with the list of establishments and their activities (processing plants, aquaculture products or cold store) being displayed in their website (https://webgate.ec.europa.eu/sanco/traces/output/non_eu_listsPerActivity_en.htm#). US and Japan follow different procedure and it is the responsibility of the importing company to ensure that the operators in the producing country meet the USFDA/Japanese Ministry of Health requirements. India has been successful in accessing all these three major markets in addition to other regional markets. Indian seafood exports reached $5.5 billion in the year 2014-15 from a level of $2.9 billion in 2010-11. The importance of various export markets to India is illustrated in Fig 6. Notable is the emergence of US as the most important market (due to imports of *P. vannamei*) and the emergence of South East Asian markets that have overtaken even the EU.

![Fig. 6. Value of imports from major markets for last 6 years (based on data from MPEDA)](image-url)
When the imported product arrives at a border post, they are subjected to inspection. Most often, these are document checks, but at random or when there is any suspicion of non-compliance, samples may be taken and tested. Detection of any non-compliance could lead to issue of rapid alerts (Rapid Alerts for Foods and Feeds, RAFF) in EU or import refusals in US or violations of food safety in Japan. A study of such alerts or import refusals could give an indication of the problems in operation of food chain. Table 3 shows main causes of alerts in EU market related to crustaceans. The annual number of alerts range from 53 in 2013 to 176 in 2009. The data indicates that high number of alerts before 2010 were mostly related to residues of veterinary drugs. This shows that aquaculture sector in producing countries need to implement good aquaculture practices to minimize disease problems and overcome the problem of use of antibiotics in aquaculture.

Table 3. Causes of rapid alerts associated with crustaceans imported by EU during the period 2004-2014 (based on data from EU RASFF portal)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbiological</td>
<td>51</td>
<td>25</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>13</td>
<td>7</td>
<td>9</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Chemicals and residues of vet drugs</td>
<td>103</td>
<td>128</td>
<td>122</td>
<td>108</td>
<td>111</td>
<td>145</td>
<td>43</td>
<td>40</td>
<td>31</td>
<td>24</td>
<td>57</td>
</tr>
<tr>
<td>Others</td>
<td>5</td>
<td>1</td>
<td>10</td>
<td>9</td>
<td>3</td>
<td>23</td>
<td>22</td>
<td>29</td>
<td>20</td>
<td>26</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>159</td>
<td>156</td>
<td>139</td>
<td>121</td>
<td>122</td>
<td>176</td>
<td>78</td>
<td>76</td>
<td>60</td>
<td>53</td>
<td>77</td>
</tr>
</tbody>
</table>

Shrimp aquaculture in Asia has been facing serious disease problems. In the early 90’s, WSSV caused a crash in shrimp production (mainly black tiger shrimp, Penaeus monodon) in many countries. Inability to overcome WSSV problem led to many countries importing Pacific white shrimp (P. vannamei), since Specific Pathogen Free (SPF) broodstock was available. But there were some indiscriminate import of non-SPF stock and this led to import of viruses like taura syndrome virus (TSV) and infectious myonecrosis virus (IMNV) to Asia, which again caused mass mortalities in P. vannamei. Further, under the false confidence that P. vannamei is disease resistant, the farmers neglected good aquaculture practices and went on with intensification of aquaculture. Poor culture practices led to outbreak of AHPND in China, Vietnam and Thailand causing shrimp production to be reduced to almost 50% in countries such as Vietnam and Thailand. These disease problems have led to unending problem of antibiotic residues in imported shrimp. High number of import alerts due to antibiotic residues led to bad publicity for cultured shrimp, which
was already suffering from negative media attention that picked upon few instances of mangrove destruction that happened during early years of shrimp aquaculture development in Asia. Environmental pressure groups were also contributing this type of negative publicity. Therefore, importers of shrimp and other aquaculture products have been under pressure to improve the image of aquaculture for their customers in developed markets. At the same time, capture fisheries has also come under criticism for over-exploitation and concerns about sustainability.

Another notable development in international markets is the growing importance of large retailers and supermarket chains in fish trade. In their effort to differentiate their products from that of competitors, they are coming up with strategies like selling only fish that has certain private certifications. Certifications for an environmental standard or ecolabel provide retailers and brand owners insurance against negative media coverage or boycotts from environmental groups. This will also help them tap into and meet consumer demand for ethical products. A number of private standard setting bodies have come up with their own certification standards and criteria. In the fisheries sector, private certifications first started with organisations like Marine Stewardship Council (MSC) certifying for sustainability of the fisheries and this has been promoted by policies of large retailers like Walmart. Reliance on third party certification for implementation of standards and for managing auditing of compliance minimises cost and responsibility to the retailers, while the certificates provide the “burden of proof” that meet the required standards. The certificates and labels help to reassure the consumers, respond to NGO pressures while shifting the costs involved in achieving these to the producers. This has led to a situation wherein there has been a proliferation of private standard setting organisations and organisations certifying compliance with private standards. Some examples of private aquaculture certifications include Aquaculture Stewardship Council (ASC), GlobalGAP, Best Aquaculture Practice (BAP) certification of Global Aquaculture Alliance (GAA). These private aquaculture certifications cover a range of issues like aquaculture practices, environmental aspects, food safety and aquaculture inputs like feed and chemicals.

Even fish processing establishments, that already implement the mandatory HACCP based quality and safety management programme, are obliged to get certified by private certifying bodies like the British Retail Consortium (BRC), International Featured Standards (IFS), Food Safety System Certification (FSSC) 22000, Safe Quality Food (SQF) Institute certification and others. A study conducted by FAO in Asia, Africa and Latin America showed that it is not uncommon to find one establishment having multiple certifications. Each of the certifications have their own requirements. Certifying agencies need to perform audits to verify compliance with the requirements. This would
involve cost to the establishments. There have been some attempts to harmonise the requirements. The Global Food Safety Initiative (GFSI) has representatives of a number of large retailers on their board and has been setup to deliver equivalence and convergence between the different food safety management systems. They benchmark the existing schemes and publish the list of recognized schemes. GFSI benchmarks food safety schemes for all sectors of food chain starting from primary production. Most of the private aquaculture certification schemes cover both food safety and sustainability aspects. Therefore, some aquaculture certification schemes like BAP and GlobalGAP have been benchmarked and recognized by GFSI.

Most aquaculture producers in developing countries are small producers operating farms of less than one or two hectares. Several studies have shown that such small farmers are unable to access international private certifications due to issues with infrastructure, cost and technical capability. Some countries in Asia have come up with their own national certification schemes. For example, Thailand came up with a Code of Conduct for Responsible Aquaculture Standard in 1997 and Good Aquaculture Practice Standard in 2000. In 2009, ThaiGAP for shrimp was developed based on FAO Technical Guidelines for aquaculture certification. In Vietnam, the national aquaculture certification scheme is called VietGAP and according to Vietnam Association of Seafood Exporters and Producers (VASEP) 30% of intensive and semi-intensive aquaculture systems will be certified by 2015 and 80% by 2020. In 2015, forty four farms have come under BAP certification of GAA and there are attempts to harmonise VietGAP with BAP certification and GlobalGAP certification.

India is yet to implement a national aquaculture certification scheme and it will be interesting to see the performance of countries like Thailand and Vietnam compared to India in complying with importer requirements. As shown in Table 4, there have been significant numbers of RASFF alerts in EU related to crustaceans from India. Most of these are related to residues of veterinary drugs. This contrasts with that in Thailand, which has been exporting more shrimp till 2013-14, when the shrimp culture industry was hit by AHPND. Vietnam, another important exporter of cultured

<table>
<thead>
<tr>
<th>Table 4. Number of rapid alerts in EU market related to crustaceans exported from India, Thailand and Vietnam (based on data from EU RASFF portal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Thailand</td>
</tr>
<tr>
<td>Vietnam</td>
</tr>
<tr>
<td>India</td>
</tr>
</tbody>
</table>
shrimp has been having less number of alerts except in 2014, when a spike is seen due to excessive use of antibiotics to combat the problem of AHPND.

Consistent problem with residues of veterinary drugs in India shows that the industry needs to improve aquaculture practices. India has experience of implementing small farmer cluster based “Better Management Practices” for shrimp aquaculture and reduce the impact of disease and simultaneously minimizing problems due to use of antibiotics (Umesh et al., 2009).

4. FAO TECHNICAL GUIDELINES FOR AQUACULTURE CERTIFICATION

The emergence of private certification schemes has been impacting particularly small producers in developing countries. At international level, Codex Alimentarius Commission standards cover food safety, fair trade practices and OIE standards cover animal health. Though FAO Code of Conduct for Responsible Fisheries broadly covered sustainability, environmental and social issues, this did not contain guidance on certification. To fill up this gap, FAO (2009, 2011a, 2011b) developed guidelines for ecolabeling of fish from marine or inland capture and guidelines for aquaculture certification. The guidelines were developed following a series of expert consultations and a final technical consultation with member countries. The guidelines have been adopted by the FAO Committee of Fisheries (COFI).

The FAO Technical Guidelines for Aquaculture Certification recognizes that a credible certification scheme consists of:

- Standard setting processes required to develop and review certification standards
- Accreditation system needed to provide formal recognition to a qualified body to carry out certification
- Certification bodies required to verify compliance with certification standards

Standard setting encompasses the tasks of developing, monitoring, assessing, reviewing and revising standards. The standard setting body should be a legal entity and should have a Technical Committee of independent experts and a consultation forum with relevant stakeholder representatives, whose mandates are clearly established. The standard setting body should have sufficient resources to support standard setting function. The Standard setting body is responsible for ensuring appropriate communication and outreaching regarding the standard and standard setting, reviewing and validation process.

The certification standard should be based on international standards, guidelines and best scientific evidence available and also considering traditional knowledge.
The requirements for standard setting are transparency and participation by interested parties. It is to be ensured that there is no conflict of interest among the entities responsible for standard setting, accreditation and certification and ensure accountability for the entities. During the process, there should be identification and review of comparable systems, identification of research needs and knowledge gaps. The standard should include adequate procedures for maintaining chain of custody and traceability of certified aquaculture products and processes. The certification scheme should not discriminate any group of farmers practicing responsible aquaculture based on scale, intensity of production or technology. The scheme should promote cooperation between farmers and traders and should be cost effective to ensure inclusive participation of responsible farmers. Special considerations are to be provided to address the interests of resource-poor small scale farmers without compromising food safety.

FAO Technical guideline for aquaculture certification identifies minimum substantive criteria for certification under each of the following aspects: (a) animal health and welfare (b) food safety (c) environmental integrity and (d) socio-economic factors. The extent to which the standard addresses these issues depends on the objective of the scheme that should be clearly stated. Due consideration should be given for the ability to measure the performance of the aquaculture system, practices and ability to assess conformity with certification standards.

Before adopting, the standards should be notified and appropriate time given for the stakeholders to provide comments, identifying the focal point for standard related queries and comments. Proper records of standards and development activity should be maintained. Appropriate procedure should be put in place for validation to ensure that the standards (a) are effective in meeting certification goals, (b) are objective and auditable, (c) do not contain criteria or requirement that can become unnecessary barriers to trade or mislead aquaculture community, and (d) take into consideration practicality and cost of standard development and maintenance.

Accreditation provides assurance that certifying bodies are competent and perform conformity assessment according to aquaculture standard in relation to animal health and welfare, food safety, environmental integrity and socioeconomic aspects. Accreditation is an independent assessment of a certification body. The accreditation body should be a legal entity with adequate resources to perform their function. The requirements for an accreditation body include: non-discrimination, independence, impartiality and transparency, availability of human and financial resources, should have laid down procedures for demonstrating accountability and resolution of complaints.
Certification is a procedure by which a body or entity gives written assurance that the aquaculture operations are in conformity with relevant certification standards. Two types of assessments are to be made: (a) conformity assessment of aquaculture operation, (b) conformity assessment of chain of custody—whether adequate measures are in place to identify and differentiate products from a certified aquaculture operation along the supply chain (traceability). Consequently, certification could be for aquaculture operation or for chain of custody or both. The certifying body should be legally and financially independent of the owner of the certification scheme and should not have any conflict of interest. Access to the services of a certifying body should be non-discriminatory and open to all types of aquaculture operations.

5. RECOMMENDATIONS

The BSS discussed the aquaculture situation in India, international trade, and the need for aquaculture certification. There was general agreement that the certification scheme should be developed using the FAO Technical Guidelines for Aquaculture Certification as the benchmark. Considering the wide diversity of types of farms and their target markets, it was considered useful to have two levels of certification. While food safety cannot be compromised and animal health is also important. The following are the major conclusions and action points:

1. The Food Safety and Standards Authority of India (FSSAI) develop mandatory product standards for fish and fishery products. There is a need for National Aquaculture Certification Standards for India.

2. National Good Aquaculture Practice (GAqP) certification will cover the process of production of fish/shrimp by Aquaculture. Different standards, for farms meeting the requirement and not meet the requirements.

3. National GAqP will be a voluntary standard. Initially, covering - fresh water aquaculture and brackish-water aquaculture.

4. National GAqP certification standard will be developed by Bureau of Indian Standards (BIS) involving all stakeholders including private sector and technical support from national institutes, universities, other academic institutions and line departments. BIS would come up with a draft standard for public comment as soon as possible.

5. Certification Scheme and other requirements for certification like accreditation will be developed by the Quality Council of India (QCI). The documents to be developed would include (a) Governing structure of the scheme, (b) Certification
process, (c) Requirements for Certification Bodies, and (d) Rules for ownership of certification mark. This work can start immediately after draft standard is available from BIS.

6. QCI and National Fisheries Development Board or Coastal Aquaculture Authority or MPEDA can jointly own the Certification scheme. The Scheme to be developed by QCI would be according to ISO17065. The certification could be valid for a period to be specified in the scheme (e.g. one year or two years).

7. The Certification Standard may be developed at two levels. Level 1 will be the basic scheme including criteria for food safety, animal health and welfare. Level 2 will be the complete scheme including Level 1 and in addition, environmental and socio-economic criteria.

8. Efforts need to be made to liaise with international benchmarking agencies such as Global Food Safety Initiative (GFSI) and Global Sustainable Seafood Initiative (GSSI) enabling smooth international market access.

9. Aquaculture farms intending to export products and interested in going for private certification schemes eg. Global GAP or ASC or BAP, QCI can help by developing national interpretation of these schemes in the Indian context.

10. To implement the certification schemes, there is need for capacity building. The Scheme owners may arrange capacity building and also carry out promotional activities.

11. All attempts need to be made to reduce the cost of certification. Group certification should be part of the scheme and this is in line with the FAO Technical Guidelines for Aquaculture Certification.

12. There would be number of constraints for implementation of certification schemes. Unless farms are registered, they cannot be certified. For shrimp farms, decentralize existing process of registration by empowering the Department of Fisheries for registration. Similar guidelines to be developed for freshwater aquaculture in accordance with national policies.

13. Use of unauthorized veterinary drugs in aquaculture is a serious issue, which is also affecting exports. There is a need for bringing sale and prescription of veterinary drugs for aquaculture under a national regulation.

14. Scientific data on pharmacokinetics of drugs for which Codex maximum residue limits (MRL) exist or for other drugs approved for use by national authorities is lacking for fish cultured in India. Such data would be essential for prescribing withdrawal times.
15. For certification, farms would need to use authorized inputs. There are number of inputs for which there are currently no standards or proper regulatory control. BIS should consider developing standards for these. The State Departments of Fisheries could develop guidelines for the use of aquaculture inputs.

16. The aquaculture farms drawing surface water passing through agriculture fields contaminated with agri-pesticides and chemicals will not meet certification requirements. Arsenic levels in farms using ground-water to be assessed. Fish safety needs to be assessed against all these contaminant.

REFERENCES

List of Participants

1. Dr S. Ayyappan, President, NAAS and Secretary, DARE and DG, ICAR.
2. Dr R.B. Singh, Immediate Past President, NAAS.
3. Dr Iddya Karunasagar, Senior International Consultant, FAO.
4. Dr Alavandi, Central Institute of Brackishwater Aquaculture, Chennai.
5. Dr (Ms) Vani Bhambri Arora, National accreditation Board for Certification Bodies, Quality Council of India, Delhi.
6. Mr V. Balasubraminiam, General Secretary, Prawn farmers Federation of India, Pondicherry.
7. Dr V. Gopinath, Bureau of Indian Standards, Delhi.
8. Prof P. Hari Babu, College of Fisheries, Nellore, Andhra Pradesh.
9. Dr R. Jayakumar, Central Marine Fisheries Research Institute, Mandapam.
10. Dr S. Kandan, Deputy Director, MPEDA, Vijayawada.
11. Dr (Mrs) Indrani Karunasagar, NAAS Fellow, Mangalore.
12. Dr Madan Mohan, ADG (Marine Fisheries), ICAR, KAB-II, New Delhi.
13. Dr Mohansundaram, Director Technical, Marine Products Export Development Authority of India, Kochi.
14. Mr Soumik Mondal, Manager (Certification), SGS, Kolkata.
15. Dr Madhumita Mukherjee, Executive Director, National Fisheries Development Board, Hyderabad.
16. Dr S.K. Otta, Central Institute of Brackishwater Aquaculture, Chennai.
17. Dr Bindu Pillai, Central Institute of Freshwater Aquaculture, Bhubaneswar.
18. Dr Pravatha Pradhan, National Bureau of Fish Genetic Resources, Lucknow.
19. Mr Rajkumar, CEO, National Center for Sustainable Aquaculture, Kakinada.
20. Dr Ravichandran, Member Secretary, Coastal Aquaculture Authority of India, Chennai.
21. Mr Prathapchandra Shetty, Executive Director, Emirates Star Fisheries, Dubai.
22. Dr S.D. Singh, ADG (Inland Fisheries), ICAR, KAB-II, New Delhi.

Note: The designations and affiliations of the participants are as on the date of BSS.
<table>
<thead>
<tr>
<th>NAAS Documents on Policy Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>61. Mastitis Management in Dairy Animals - 2013</td>
</tr>
<tr>
<td>62. Sustenability, Quality Assurance - 2013</td>
</tr>
<tr>
<td>63. Nano Technology in Agriculture: Scope and Current Relevance - 2013</td>
</tr>
<tr>
<td>64. Improving Productivity of Rice Paddies - 2013</td>
</tr>
<tr>
<td>65. Climate Resilient Agriculture in India - 2013</td>
</tr>
<tr>
<td>66. Role of Millets in Nutritional Security of India - 2013</td>
</tr>
<tr>
<td>67. Urban and Peri-Urban Agriculture - 2013</td>
</tr>
<tr>
<td>68. Efficient Utilization of Phosphorus - 2014</td>
</tr>
<tr>
<td>69. Carbon Economy in Indian Agriculture - 2014</td>
</tr>
<tr>
<td>70. MCCD for Capacity Building in Indian Agriculture: Opportunities and Challenges - 2014</td>
</tr>
<tr>
<td>71. Role of Root Endophytes in Agriculture Productivity - 2014</td>
</tr>
<tr>
<td>73. Monitoring and Evaluation of Agricultural Research, Education and Extension for Development (MREED) - 2015</td>
</tr>
<tr>
<td>75. Linking Farmers with Markets for Inclusive Growth in Indian Agriculture - 2015</td>
</tr>
<tr>
<td>76. Biochar to Power Indian Agriculture - 2015</td>
</tr>
</tbody>
</table>
Aquaculture Certification in India: Criteria and Implementation Plan

NATIONAL ACADEMY OF AGRICULTURAL SCIENCES, NEW DELHI
December 2015

*For details visit web site: http://www.naasindia.org

NAA Documents on Policy Issues

1. Agricultural Scientists’ Perceptions on National Water Policy
3. Harvesting and Management of Water Resources for Enhancing Agricultural Production in the Eastern Region
4. Conservation, Management and Use of Agricultural Biodiversity
5. Sustainable Agricultural Export
6. Reorienting Land Grant System of Agricultural Education in India
7. Diversification of Agriculture for Human Nutrition
8. Sustainable Fisheries and Aquaculture for Nutritional Security
9. Strategies for Agricultural Research in the North-East
10. Globalisation of Agriculture: R & D in India
11. Empowerment of Women in Agriculture
12. Sanitary and Phytosanitary Agreement of the World Trade Organization Advantage India
13. Livestock in India
14. Conservation and Management of Genetic Resources of Livestock
15. Prioritization of Agricultural Research and Development
16. Agricultural Industry Interface: Viable Allied Farm Products
17. Scientists’ Views on Global Governance of an Agricultural Research Organization
18. Agricultural Policy: Realigning R & D to Achieve Its Objectives
19. Intellectual Property Rights in Agriculture
20. Dichotomy Between Grain Surplus and Widespread Undernourishment
21. Priority of Research and Human Resource Development in Fisheries Biotechnology
22. Biodiversity Conservation and Utilization
23. Export Potential of Dairy Products
24. Biotechnology of Transgenic Crop
25. Strengthening the Linkages Between Employment Oriented Agricultural Education
26. Fast Urban Vegetable Cultivation in the NCR Delhi
27. Diamond Management in Agriculture
28. Impact of River Basin Scheme Linkages on Fisheries
29. Transgenic Crops and Biotechnology Related to Their Commercialization in India
30. Organic Farming: Approaches and Possibilities in the Context of Indian Agriculture
31. Reforming Agricultural Education and Extension System in Changed Scenario
32. Emerging Issues in Water Management: The Question of Ownership
33. Policy Options for Efficient Nitrogen Use
34. Guidelines for Improving the Quality of Indian Journals & Professional Societies in Agriculture and Related Sciences
35. Law and Decline in Crop Responses to Fertilizers
36. Backyard Poultry in Relation to Crop Systems
37. Employment Opportunities in Farm and Non-Farm Sectors Through Trade and Agricultural Sector
38. Technological Interventions with Emphasis on Primary Value Addition
39. WTO and Indian Agriculture: Implications for Policy and R&D
40. Innovation in Rural Institutions: Driving For Agricultural Productivity
41. High Value Agriculture: Prospects and Policies
42. Sustainable Energy for Rural India
43. Crop Reseas and Nutrient Use
44. Antibiotics in Medicine and Soil A Go-Wash Threat to Human and Animal Health
45. Piper Quinquefolius: Utilizing Indigenous Knowledge in the Control of Diseases and Insects
46. Agriculture: Management, Issues and Strategies
47. Veterinary Vaccines and Diagnostics
48. Protected Agriculture in Northeast Himalayas
49. Exploring Unleashed Potential of Acid Soils in India
50. Agricultural Waste Management
51. Drought: Preparations and Mitigation
52. Carrying Capacity of Indian Agriculture
53. Soils for Sustainable Management of Crop Production in India
54. Ecosystem and Certification in Capture Fisheries and Aquaculture
55. Integration of Hill R Hill Farming
56. Fishing: Critical Issues
57. Sustainable Agricultural Productivity through Integrated Soil Management
58. Water Use Potential: Nodal Affected and Drained-prone Areas of Eastern India
59. Livelihood Insecurity and its Management
60. Water Use Potential: Nodal Affected and Drained-prone Areas of Eastern India

Continued on inside cover.